

Applications and Advancements in Biofloc Technology

Andrew J. Ray, Ph.D.

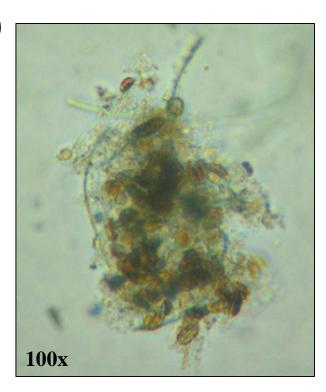
Kentucky State University

College of Agriculture, Food Science and Sustainable Systems

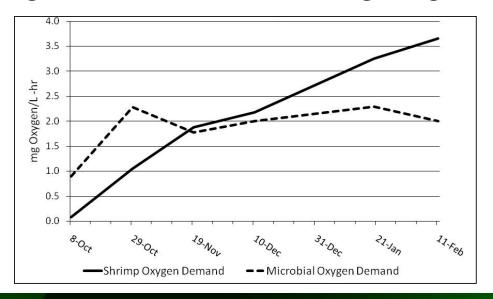
Biofloc Aquaculture Systems

- Low Water Exchange
 - Biosecurity
 - Temperature Control
 - Salt Conservation = InlandBrackish Operation
- High Animal Density
 - (Intensive → Superintensive)
 - Indoor Operation
 - Climate Control
 - Diverse Regions

Biofloc Systems


- No External Biological Filtration
 - Solids Filtration Common
- Typically No Soil Interaction
 - Tanks, Lined Ponds, Concrete
 Vessels, Raceways
- Primarily Used for Shrimp and Tilapia
 - Other Candidate Taxa and Life
 Stages (ex. Catfishes, Marine
 Fishes, Bait Fish)

Biofloc Particles


- Natural (Similar to Marine Snow)
- Aggregations of
 - Microbes, Algae (in light), Protists,
 Zooplankton, Feed Particles, Feces,
 Detritus (eg. Exoskeletons),
 Exopolymeric Substances
- Responsible for Cycling Wastes
 - Nutrients (N, C, P)
 - Metals?

Biofloc Particles

- Potentially Nutritious
 - Recycling of Nutrients!
 - Protein, Lipids, Minerals, Vitamins
- Vary in Size ($< 1 \mu m 200 \mu m$)
- Free Living and Surface Dwelling Organisms as Well

Key Functional Variations... Nitrogen Cycling

- Photoautotrophic assimilation: $N \rightarrow$ protein
- Heterotrophic assimilation: $N \rightarrow$ protein
- Chemoautotrophic Nitrification: $NH_3 \rightarrow NO_2 \rightarrow NO_3$

• Mixed

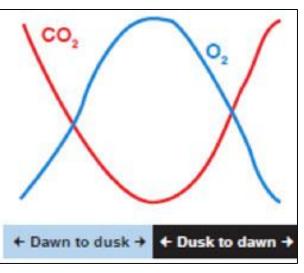
- Most Often
- Can ManageFunction

Biofloc System Management

- Key Management Factors
 - Animal Density = Nutrient Load
 - Feed = Types of Nutrients... C/NRatio
 - Carbohydrate Additions = C/NRatio
 - Solids Removal = LightPenetration, Nutrient Cycling,and More
 - <u>Lighting</u> = Photosynthesis

Photoautotrophic Function (Green)

- Most Common Commercially
- Lower Density (< ~200 shrimp m⁻³)
 - Lower Maintenance, Cost
- Ponds mostly, greenhouses, possibly indoor
- Algae
 - Nutritious
 - Lipids, Protein
 - N Assimilation, Must be Cropped
 - Filters, Fishes, Shrimp, Zooplankton

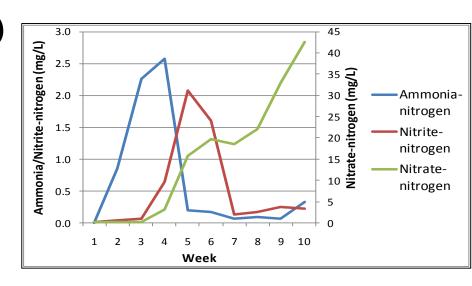

_	<u>Light</u>	and	<u>Dark</u>
	↑ Oxygen		↓ Oxygen
	$\downarrow \mathrm{CO}_2$		$\uparrow \mathrm{CO}_2$
	↑ pH		↓ pH

Photoautotrophic Function (Green)

- Ample Light
 - Natural Light
 - Cheap
 - Inconsistent... Algae Bloom/Crash
 - Artificial Light Possibly Appropriate
 - Supplemental Lighting?
 - Fluorescent (red/blue) = mid-price/energy
 - LED = high price, low energy
 - Incandescent, white fluorescent = potentially harmful organisms
 - Poor Lighting, Solids Shading = Cell Death, Cyanobacteria
 - Must crop solids (biofloc) or self-shading

Heterotrophic Function (Brown)

- Mid-level Density ($\sim 150 350$ shrimp m⁻³)
- High C:N Ratio (> ~12:1)
 - Carbon = Energy
 - Nitrogen = Protein
- Low Protein Feeds
 - Less Expensive
 - Sustainability?
- Additional Carbon Sources
 - Added Cost
- Select For Beneficial Microbes?
 - Against Harmful Microbes?
 - Ex. Vibrio sp. Versus Bacillus sp....
 - Protection from EMS???


Heterotrophic Systems (Brown)

- Assimilation of N Into Biofloc (heterotrophs)
 - Microbial Protein
 - Nutritious
 - ↓ FCR
 - ↑ Growth Rate
 - No Nitrate
- Increase of Biomass
 - Must be Removed = More Solid Waste
 - Need Remediation (Preferably Recycling) Techniques
- Relatively High Oxygen Demand, CO₂ Production
 - Evaluating Innovative Oxygenation Systems
 - Timing of Feeding, C Additions

Chemoautotrophic Systems

- High Density (> \sim 350 shrimp m⁻³)
 - Typically greatest production, investment, time, risk...
- Lower C:N Ratio (< ~9:1)
 - Higher Protein Feeds
- Microbial N Oxidation
 - Ammonia to Nitrite to Nitrate

- Often Reliable Once Established
 - Some glitches... Can be confounded by other organisms
 - Long Establishment Time

Chemoautotrophic Systems

- Less Solids Production and Oxygen Consumption
 - Compared to Heterotrophic
- Generally Mixed Systems
 - Some Heterotrophic and Photoautotrophic Function
 - Less Microbial Management?
- Build up of Nitrate
 - Need Water Reuse (biosecurity, salt conservation, etc...)
 - Denitrification = Filtration Systems, Batch Reactors,
 Settling Basins

Summary

- Unique Opportunities
 - Biosecurity, Indoor Culture, Reduced Feed Costs,
 Intensive Production, Nurseries to Support Ponds...
- Some Commercial Application, but Plenty of Room for Refinement = Opportunity to Customize
- System Management = Microbial Management
 - Dictates System Function
 - Focus on Goals
 - Location, Production Goals, Climate, Market, Control...

Thank You

United States Department of Agriculture National Institute of Food and Agriculture

AES Biofloc Webpage:

http://www.aesweb.org/biofloc.php

